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Abstract In this paper, we present a comparison of linear and exponential interpolation functions
for control volume finite element method. The exponential interpolation function is expressed in the
elemental local coordinate system whereas the classic linear interpolation function is expressed in
the global coordinate system. The comparison is achieved in the case of the Green-Taylor vortex, a
flow from which we know the analytical solution. Firstly, the two functions are applied to a
triangular element of the domain to compare the results given by each interpolation function to the
exact value. Secondly, these two functions are compared when used to solve the discretized
equations over the entire domain.
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Nomenclature
Ji ¼ combined convection diffusion

flux corresponding to the
component ui

L ¼ elemental side
n ¼ outward-pointing normal
P ¼ node
p ¼ pressure
PeD ¼ elemental Peclet number
Re ¼ Reynolds number
si ¼ body force
S ¼ surface bounding the control

volume
u ¼ velocity vector
u av ¼ average velocity vector over an

element
Uav ¼ magnitude of vector u av

ui ¼ velocity components
(u1¼ u, u2¼ v)

~u; ~v ¼ pseudo-velocity components
Vp ¼ control volume
x, y ¼ global Cartesian coordinates
X, Y ¼ local Cartesian coordinates

Greek symbols
m ¼ dynamic viscosity of the fluid
r ¼ density of the fluid
t ¼ dimensionless time
Dt ¼ dimensionless time step

Subscripts
av ¼ average
i ¼ ith Cartesian direction
nb ¼ neighboring nodes to the central

node
P ¼ pertaining to node P

Abbreviations
CVFEM ¼ control volume finite element

method
FLO ¼ flow-oriented interpolation
FLOS ¼ flow-oriented interpolation with

source effects
LI ¼ linear interpolation
LU ¼ lower-upper
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1. Introduction
The numerical procedure used in this study is the control volume finite element
method (CVFEM) in equal order; i.e. pressure and velocity components are
stored at the same point. CVFEM combines advantages of finite element and
finite volume methods. Its formulation is based on easy physical interpretation
and their solutions satisfy both global and local conservation. In addition,
CVFEM uses a control volume that is not obligatory regular and then can
delimit a complicate domain. The flexibility of the grid is the famous advantage
of this method. Baliga and Patankar (1980, 1983) were the first founders of the
CVFEM. Besides the introduction of the basic concept of using the control
volume, the major contribution of their work lies in the development of an
appropriate shape function for simulating a convection diffusion process. Over
each element, the proposed shape function is exponential in the direction of the
average velocity vector and linear in the normal direction. This function called
flow-oriented interpolation (FLO) simulates correctly the one-sided (upwind)
nature of convection and the two-sided nature of diffusion. Baliga and Patankar
(1980) mentioned that, since FLO is developed along the direction of the local
flow, it reduces crosswind diffusion considerably. Since that time, many
transformations have been carried to FLO. Prakash (1986) proposed an other
shape function similar to FLO but depending on the source terms of the
momentum equations. This function is called flow-oriented interpolation with
sources effects (FLOS). He used FLOS also in the integration of the continuity
equation for formulating the pressure equation. Under certain conditions FLOS
is an exact solution of the equation of two-dimensional convection-diffusion
problem written in the local coordinate system. FLOS proposed by Prakash
(1986) is not the unique solution of the above-mentioned equation. In this
context, Hookey (1989) proposed an other variant of FLOS which differently
depends on the source term. Saabas and Baliga (1994) carried out a detailed
investigation about interpolation functions used in CVFEM for two- and three-
dimensional incompressible fluid flow. Their study concerns FLO, FLOS and
mass-weighted (MAW) upwind scheme. They conclude that the FLOS scheme
is not recommended, it is even more prone to difficulties than the FLO scheme.
Even in source dominated problems for which both the FLO and FLOS
scheme produce converged solutions, the results of the FLOS scheme are not
necessarily more accurate than those produced by the FLO scheme.
Furthermore, to the study of Saabas and Baliga (1994), FLOS and FLO are
completely abandoned in the treatment of the continuity equation and in the
diffusive term of momentum equations and were replaced by a simple linear
interpolation (LI) expressed in the global coordinate system. FLO is retained
only in the treatment of the convective term of the momentum equations. Then, it
seems that the golden time of the exponential interpolation is coming to its finish.

The principle aim of this paper is the evaluation of FLO as it was developed
by Saabas and Baliga (1994) by comparing it to the classic LI. LI and FLO
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schemes are the most used in CVFEM. We will try to answer a question that we
judge very important: Does the FLO used in the convective term present any
advantage compared to LI? In order to have a precise comparison, we have
chosen to apply FLO and LI to a flow from we know which is the exact solution.
Unfortunately, flows verifying this condition are very few. The flow between
concentric rotating cylinders have exact solutions that do not depend on the
Reynolds number Re, variation of errors cannot be calculated as a function of
Re. Also, we have not chosen the Pearson test of Pearson (1965) because
solutions are obtained only for a Re equal to unity. Finally, we retain the Green-
Taylor vortex flow. In this example, exact solutions depend on the Re and on
the time. This flow constitutes a good example for the evaluation of the
precision of FLO and LI.

2. Governing equations – numerical procedure
The mass conservation and the Navier-Stokes equations for incompressible
Newtonian fluid flow are given as follows:

7 · ðruÞ ¼ 0 ð1Þ

›ui

›t
þ 7 · ðJiÞ ¼ si 2

›p

›xi

ð2Þ

where

Ji ¼ ruui 2 m7ui ð3Þ

In these equations, m is the dynamic viscosity, r is the mass density and p is the
pressure. si is the body force term acting in the ith Cartesian coordinate
direction and Ji is the combined convection-diffusion flux associated to the
component ui of the velocity vector u. Since we are limited to two-dimensional
problems i can take only two values: for i ¼ 1 : ui ¼ u; xi ¼ x and for i ¼ 2 :
ui ¼ v; xi ¼ y.

We now present a brief description of the discretization procedure in
CVFEM used in equal order. Detail descriptions of this method for fluid flow
are available in all references cited earlier, except Pearson (1965), in the two
publications of Abbassi et al. (2001a, b) and in many other references. A control
volume is constructed around every node P by joining the centroids of the
relevant triangles to the midpoints of the sides as indicated in Figure 1.

The momentum transport equation (2) are integrated over the control
volume to obtain equations of nodal values of the velocity components.
A special procedure is used to integrate the mass conservation equation (1)
leading to the discretized pressure equation. Using the Green-Ostrograski
theorem, integration of the divergence term in momentum equation (2) over the
control volume surrounding node P gives:
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Z
Vp

7 · ðJiÞ dv ¼

Z
S

Ji · n ds ð4Þ

where S is the surface area of the control volume Vp surrounding node P and
n is a unit outward normal to the differential surface area ds.

Now we consider the element PAB shown in Figure 2 associated to a local
FLO Cartesian coordinate system (X, Y ), the origin is located at the element
centroid g and the X-axis is aligned with the elemental-averaged velocity vector
as indicated in Figure 2. This local coordinate system is used by the FLO
scheme. The second member of equation (4) is evaluated by calculating the flux
of Ji throughout the surface bounding the control volume situated in every
element neighboring node P. Integration of other terms in equation (2) over
the control volume can be realized easily. By collecting and simplifying, the
discretized equations for u and v components can be written as:

APup ¼
nb

X
Anbunb þ V p 2

›p

›x

� �
þ V pu

o
p=Dt ð5Þ

Figure 1.
Control volume around a
node P

Figure 2.
Element PAB with local
coordinate system and
seven internal nodes.
These seven internal
nodes will be used later
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APvp ¼
nb

X
Anbvnb þ V p 2

›p

›y

� �
2 V pv

o
p=Dt ð6Þ

where subscript nb refers to all nodes neighboring to the node P, Dt is the time

step, uo
p and vo

p refers to the last time step values of up and vp. 2›p
›x

� �
and 2›p

›y

D E
are the average values of 2›p

›x

	 

and 2›p

›y

� �
acting over the entire control

volume surrounding the node P and is evaluated by assuming a linear variation
of pressure.

The pressure equation is indirectly specified through satisfaction of mass
conservation equation (1). Equations (5) and (6) can be rewritten as:

up ¼ ~up þ Bp 2
›p

›x

� �
ð7Þ

vp ¼ ~vp þ Bp 2
›p

›y

� �
ð8Þ

where ~up and ~vp represents the pseudo-velocity components, and Bp the
pressure-gradient coefficient. Their expressions are easily identified by
comparing equations (7) and (8), respectively, to equations (5) and (6).

As in Saabas and Baliga (1994), we assume a linear variation of u and v
components in the treatment of the pressure equation. Using equations (7) and
(8), the integration of the mass conservation equation (1) through the control
volume surrounding node P yields the discretized equation of pressure written
in the classic form:

CpPp ¼
nb

X
CnbPnb þ Dp ð9Þ

where Dp is the source term arising from pseudo-velocity fields.
The SIMPLER algorithm of Patankar (1980) was applied to treat the

pressure-velocity coupling. Equations (5), (6) and (9) are written in a matrix
shape and solved iteratively at every instant by LU decomposition.

3. Interpolation functions
The interpolation functions that will be discussed here are for the velocity
components ui, when they are treated as transported scalars in the appropriate
momentum equations. The vector Ji in equation (2) contains a convective term
(ru ui) and a diffusive term (m7ui). In this investigation, interpolation
functions concern only the ui component in the convective term. The work of
Saabas and Baliga (1994) show that the adequate interpolation function for ui in
the diffusive term and in the treatment of the continuity equation is the LI
scheme. The simplest interpolation function, that first comes to the mind, is the
LI which is usually expressed in the global coordinate system by:
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ui ¼ ax þ by þ c ð10Þ

Writing equation (10) at the three nodes of a triangular element, where ui is
given, we can easily deduce values of the coefficients a, b and c. Consider now
the triangular element PAB shown in Figure 2, the relation between the local
and the global coordinate system is given by:

X ¼
1

U av
½ðx 2 xgÞug þ ð y 2 ygÞvg� ð11Þ

Y ¼
1

U av
½2ðx 2 xgÞvg þ ð y 2 ygÞug� ð12Þ

where the subscript g refers to the elemental centroid and Uav is the magnitude
of the average velocity vector uav of the triangular element. The exponential
interpolation function concerned in this study, called FLO is proposed by
Saabas and Baliga (1994):

ui ¼ Ajþ BY þ C ð13Þ

the variable j is defined as:

j ¼
m

rU av
21 þ exp

PeDðX 2 XmaxÞ

Xmax 2 Xmin


 �

the elemental Peclet number ( PeD) is an indicator of the relative strengths of
convection to diffusion within the element and defined as:

PeD ¼
rU avðXmax 2 XminÞ

m

with Xmax and Xmin defined as:

Xmax ¼ MAXðXP;XA;XBÞ and Xmin ¼ MINðXP;XA;XBÞ

4. Green-Taylor vortex
Exact solutions of the Green-Taylor vortex are given as:

u ¼ 2cos ðxÞ sin ð yÞ exp ð22t=ReÞ ð14Þ

v ¼ sin ðxÞ cos ð yÞ exp ð22t=ReÞ ð15Þ
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p ¼ 2
1

4
½cos ð2xÞ þ cos ð2yÞ� exp ð24t=ReÞ ð16Þ

The numerical domain considered in this study is a square of side p in which x
and y are in the range of 2p/2 and p/2. Figure 3 is a plot of the velocity field of
the Green-Taylor vortex at t ¼ 1 and Re ¼ 100 computed using the LI scheme.

5. Application over an element
The triangular element PAB in which we will compare the FLO and the LI
schemes is indicated in Figure 2. Values of ui at nodes P, A and B are given and
serve to calculate the coefficients of the interpolation functions (10) and (13).
Calculated values of ui at the seven internal nodes are deduced using either
FLO (13) or LI (10). Since most software of triangularisation have tendency to
construct equilateral elements, the element of Figure 2 is also equilateral and of
a side L. It should be noted that values of ui at the seven internal nodes are used
to obtain the discretized equations of the entire domain in CVFEM.

We define the local error in percent committed in the calculation of ui at a
given internal node as:

eðI Þ ¼
uiðexactÞ2 uiðcalculatedÞ

uiðexactÞ

����
���� £ 100 ð17Þ

where I¼ 1,. . .,7 represents the issue of the internal node, u1 and u2 are,
respectively, u and v components.

Figure 3.
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The global error relative to the triangular element is defined as:

errorðuiÞ ¼ max½eðI Þ� ð18Þ

The triangular element PAB is placed in the calculation domain so that the
node P is placed at the point of coordinates ðx ¼ 1; y ¼ 1Þ: We note that error(u)
and error(v) are found to be almost in the same magnitude, so, only error(u) will
be presented in this section.

Figure 4 is a plot of the variation of error(u) as a function of the elemental
side L. Starting from a very small value of L, curves corresponding to FLO and
LI overlap. This result is expected, as if L tends to zero, PeD also tends to zero
and the FLO scheme given by equation (13) is identical to the LI scheme given
by equation (10). By increasing the side L, the error given by the FLO becomes
more pronounced compared to that given by the LI scheme. Figure 4 shows
clearly that over an element the LI scheme is far more accurate than the FLO
scheme. This result is confirmed in Figure 5 where we plot the variation of
error(u) as a function of PeD.

PeD is varied by varying the global Re and keeping fixed the value of L at
0.01. The relation between PeD and Re is given by:

PeD ¼ U av ðXmax 2 XminÞRe ð19Þ

As seen in Figure 5, the LI scheme is clearly more accurate than the FLO
scheme.

6. Application over the entire domain
The discretized equations (5), (6) and (9) are solved using the SIMPLER
algorithm for the Green-Taylor vortex over the entire domain which is a square

Figure 4.
Variation of error(u) as a
function of the elemental
side L
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of side p as shown in Figure 3. Computed solutions are compared to the exact
solutions given by equations (14)-(16). The overall error is defined as:

errorðfÞ

P
jf ðexactÞ2 f ðcalculatedÞjP

jf ðexactÞj
£ 100 ð20Þ

where the summation is taken over all nodes of the calculation domain and f is
the dependent variable ðf ¼ u; v; pÞ: Here also error(u) and error(v) are found to
be almost of the same magnitude, so in the following, only error(u) and error( p)
will be presented. error( p) is calculated not to test the interpolation function of
pressure but to evaluate the effects of LI and FLO on the evolution of pressure
field. Results are obtained by a grid of 3,369 nodes and 6,524 elements. This
grid shown in Figure 6 is slightly more refined than the most refined grid used
by Braza (1981) with a classic control volume method (3,136 nodes). A more
refined grid of 4,739 nodes and 9,224 elements does not carry any significant
change on the numerical results.

The purpose of this paragraph is the comparison of the effects of FLO and LI
schemes on the stability of the numerical process and on the accuracy of
solutions. Starting from exact fields of u and v obtained by equations (14) and
(15) for t ¼ 0 and Re ¼ 100 and from an identical zero field for pressure, the
numerical process is abandoned to itself and stopped at t ¼ 1: During the
numerical process, boundary conditions for u and v components are fixed at
their values given by equations (14) and (15) at t ¼ 1 and Re ¼ 100: Pseudo-
velocity components ũ and ṽ are equal to u and v components, respectively, at
all boundaries.

The distance of fluid travel in one time increment must be less than one
space increment (Dx or Dy). This hypothesis leads to the constraint on the time
step Dt given as:

Figure 5.
Variation of error (u) as a

function of the PeD
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Dt , min
Dx

juj
;
Dy

jvj

� �
 �
ð21Þ

In this study, Dx ¼ Dy ¼ 0:06 and the maximum values of u or v is equal to 1.
The constraint (21) allows to Dt , 0:06: In the following, the time step is fixed
at Dt ¼ 0:05: A value of Dt ¼ 0:025 was also tested but no significant change
was observed on the numerical results.

As can be seen in Figure 7, where we plot the evolution of error(u) as a
function of time, the curve corresponding to the LI scheme leads to damping
oscillations, while error(u) corresponding to the FLO scheme increases
considerably and it seems that the numerical process will diverge if the time is
sufficiently prolonged. As given by equations (14) and (15), u and v components
are strongly decreasing functions of time. As the time is prolonged, values of u
and v becomes small and then the elemental average velocity Uav is also small
and may tend to zero in some nodes. Local coordinate system (X, Y ) calculated
by equations (11) and (12) and the function j of equation (13) may lead to
unrealistic values. This may explain why the FLO scheme seems to diverge.
This is a real handicap; the FLO scheme can not predict correctly a flow or a
region of flow when velocities are small. Especially, FLO should not be used in
flows containing rolls such as shedding vortices behind obstacle and
convective cells due to heat transfer.

Figure 8 compares error( p) obtained by FLO to that obtained by LI. We
remark that both schemes lead to damping oscillations but oscillations of the LI
are of less magnitude. The variation of errorðf ¼ u; v; pÞ as a function of the Re
has been also realized. Results show that for Re ranging from 10 to 500, the LI

Figure 6.
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scheme leads always to more accurate solutions than those given by the FLO
scheme. Beyond Re ø 500 oscillations, growth in magnitude for LI and FLO
and the number of iterations per time step augments considerably and the
convergence of the numerical process becomes difficult to realize.

Patankar (1980) showed that the centered scheme for classic volume, which
is equivalent to LI scheme in CVFEM, is tolerated only for low Re. The
principle cause is that the centered scheme produces “numerical diffusion”.
This cause is realistic because the control volume used in two-dimensional
classic control volumes is rectangular and then has only four faces, then

Figure 7.
Evolution of error(u)

Figure 8.
Evolution of error(p)
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numerical diffusion can easily happen. Other interpolation functions are then
proposed such as upwind and exponential schemes. In CVFEM the grid is not
structured, the control volume has far more faces than that in classic volume. In
CVFEM a given node has in general five to eight neighboring nodes, thus the
control volume around this node has 10-16 faces. In this configuration, we
estimate that the numerical diffusion produced by the LI scheme has secondary
effects on the accuracy of the numerical results. This may explain the
superiority of the LI scheme on the FLO scheme in CVFEM.

7. Conclusion
The linear interpolation and the exponential interpolation schemes used in
CVFEM are compared in the case of the Green-Taylor vortex, a flow from
which we know the analytical solutions. Results show that, over a triangular
element, the linear interpolation gives solutions more accurate than those given
by the exponential scheme. Over the calculation domain, the resolution of the
system of discretized equations show that the linear function leads to less
oscillations and more accurate solutions than the exponential function in spite
of its complications.
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